ARISANDAN DERET GEOMETRI SOAL DAN APLIKASI DALAM KEHIDUPAN SEHARI – HARI: 1. BUNGA DAN SIMPANAN PINJAMAN 2. PERTUMBUHAN DAN PELURUHAN A. APLIKASI DI DUNIA NYATA 1. Barisan dan Deret Geometri dalam kehidupan sehari-hari Dalam kehidupan sehari-hari banyak kita jumpai berbagai kejadian yang memiliki pola Powerpoint - Barisan dan deret aritmatika. Barisan dan Deret Geometri (Plus Link Download PPT Video Ini) - Pola Bilangan Matematika SMP Kelas 8 - YouTube. Matematika SMA: Aplikasi Barisan dan Deret Dilengkapi 30+ Soal Latihan dan Pembahasan | defantri.com. MATERI AJAR BARIS DAN DERET GEOMETRI KURTILAS. Desember 2014. Berikutini gue kumpulan artikel dan latihan soal tentang barisan dan deret beserta pembahasan yang bisa elo baca lebih lanjut: Yuk, Kenalan Sama Barisan dan Deret Aritmatika. Rumus Suku ke N dalam Barisan Aritmatika dan Geometri. Barisan dan Deret Geometri: Rumus, Contoh Soal, dan Pembahasan Lengkap. Barisandan deret geometri adalah salah satu materi yang dipelajari dalam Matematika SMA. Barisan geometri adalah baris yang nilai setiap sukunya didapatkan dari suku sebelumnya melalui perkalian dengan suatu bilangan. Perbandingan atau rasio antara nilai suku-suku yang berdekatan selalu sama yaitu r. Nilai suku pertama dilambangkan dengan a. Jawaban: A. Un = Sn – Sn – 1. U20 = S20 – S19 = (202 + 5.20) – (192 + 5.19) = 500 – 456 = 44. 3. Seorang penjual daging pada bulan januari dapat menjual 120 kg, bulan Februari 130 kg, Maret dan seterusnya selama 10 bulan selalu bertambah 10 kg dari bulan sebelumnya. Jumlah daging yang terjual selama 10 bulan adalah . ContohSoal Barisan dan Deret Aritmatika Geometri, Pengertian, Rumus, Sifat-sifat Notasi Sigma, Tak Hingga, Hitung Keuangan, Kasus ini adalah aplikasi dari barisan aritmetika. Suku awal a = 700.000. Beda b = 125.000. n = 9. Jadi suku ke-9, dapat ditentukan sebagai berikut. Deretgeometri dikenal juga dengan sebutan deret ukur. Contoh: 1 + 2 + 4 + 8 +16+32. 3 + 6 + 12 + 24 + 48 + 96. Untuk menghitung deret geometri terdapat dua rumus, yaitu : Rumus Deret Geometri Turun. Rumus deret geometri turun hanya bisa digunakan jika 0 < r < 1. S n = a (1 - rn) 1 Caribeda barisan tersebut dan carilah jumlah deret aritmatika tersebut. Jawab: Logikanya, jika disisipkan 15 buah bilangan, maka renggang dari 3 sampai 99 ada (15+1)interval. 99 = 3 + 16d, maka d = 6. Jadi, bedanya adalah 6. S = = 17.51 = 867. BARISAN DAN DERET GEOMETRI Barisan Geometri. BARISAN GEOMETRI BarisanAritmatika; Barisan Geometri; Mari kita bahas satu per satu. Barisan Aritmatika. Dalam barisan deret aritmatika terdapat penjumlahan ataupun pengurangan untuk menentukan suku ke-n. Perhatikan barisan bilangan dibawah ini: 1,3,5,7, Kalian pasti dengan mudah menentukan angka berikutnya adalah 9! Barisan diatas termasuk kedalam barisan BARISANDAN DERET GEOMETRI Kompetensi Dasar: 3.4 Menggeneralisasi pola bilangan dan jumlah pada barisan aritmetika dan geometri 4.4 Menggunakan pola barisan aritmetika atau geometri untuk menyajikan dan menyelesaikan masalah kontekstual termasuk pertumbuhan, peluruhan, bunga majemuk, dan anuitas) Sekianulasan tentang barisan dan deret aritmatika dan geometri untuk level kognitif aplikasi. Diketahui suatu barisan geometri di mana untuk mencari suku Un. Pengertian dan Rumus Deret Geometri dan Contoh Soal Deret (Randall Reid) Deret bilangan juga terdiri dari dua macam , seperti halnya barisan bilangan yaitu deret bilangan aritmatika 1 Suku ke – n barisan aritmatika ( Un) dirumuskan sebagai : 2. Jumlah n suku pertama deret aritmatika ( Sn) dirumuskan sebagai: 3. Untuk n ganjil, maka suku tengah barisan aritmatika (Ut) dirumuskan sebagai: 4. Sisipan dalam deret aritmatika. dimana : b = beda sebelum di sisipi, b'= beda yang baru setelah disisipi. HiLupiners! Masih tentang aplikasi barisan dan deret. But, kali ini kita akan mempelajari tentang bunga tunggal dan bunga majemuk serta anuitas. Materi ini sering kita temui sehari-hari. For instance, dalam kegiatan menabung atau meminjam baik itu di bank maupun koperasi, kemudian kredit baik itu dalam kredit pembelian barang maupun rumah, dan lain Salahsatunya adalah mata pelajaran geometri. Jadi barisan geometri ini merupakan pola yang memiliki rasio yang tetap untuk setiap dua suku berdekatan. Dari barisan tersebut, tentu kita bisa melihat suku pertama dengan suku ke-2 suku ke-3 dan juga rasio yang tetap yaitu 3. Dengan demikian barisan tersebut termasuk dalam barisan geometri. ContohSoal Matematika Umum Kelas 11 Bab Barisan dan Deret + Kunci Jawabannya Part 5 (Aplikasi Barisan dan Deret) ~ sekolahmuonline.com. Pembaca Sekolahmuonline, berikut ini Sekolahmuonline sajikan kembali contoh soal mata pelajaran Matematika kelas 11 SMA/MA Bab Barisan dan Deret lengkap dengan kunci jawaban dan pembahasannya. LA9C. Dalam kehidupan sehari-hari, banyak persoalan yang dapat diselesaikan dengan menggunakan barisan maupun deret, misalnya perhitungan bunga bank, perhitungan kenaikan produksi, dan laba usaha. Untuk menyelesaikan persoalan tersebut, terlebih dahulu kita tentukan apakah masalah tersebut adalah barisan aritmetika, barisan geometri, deret aritmetika atau deret geometri. Kemudian kita selesaikan dengan rumus-rumus yang berlaku untuk memperoleh jawaban dari persoalan yang soal aplikasi barisan dan deretUntuk lebih jelasnya, dibawah ini diberikan 10 soal aplikasi barisan dan deret yang disertai penyelesaiannya atau 1Setiap awal bulan, Susi menabung sejumlah uang di bank dengan besar selalu naik. Bulan pertama menabung Rp bulan kedua Rp dan bulan ketiga Rp dan seterusnya. Jumlah tabungan Susi setelah 10 bulan tanpa bunga adalah…Penyelesaian / PembahasanDiketahuia = Rp = Rp – Rp = Rp = 10Dengan menggunakan rumus deret aritmetika diperolehSn = 1/2 n 2a + n – 1 bU10 = 1/2 . 10 2 . Rp + 10 – 1 Rp = 5 Rp + Rp = 5 Rp = Rp jumlah tabungan Susi setelah 10 bulan adalah Rp 2Suatu perusahaan memproduksi barang pada tahun pertama. Setiap tahun perusahaan tersebut menaikkan produksinya sebesar 200 satuan barang. Banyaknya produksi pada tahun ke 10 adalah…Penyelesaian / PembahasanDiketahuia = = 200n = 10Dengan menggunakan rumus suku ke n barisan aritmetika didapat hasilUn = a + n – 1 bU10 = + 10 – 1 200U10 = + = 2800Jadi banyak produksi pada tahun ke 10 adalah unit 3Disuatu gedung serba guna terdapat 20 baris kursi. Pada baris paling depan tersedia 20 kursi, baris belakangnya memuat 3 kursi lebih banyak dari baris jumlah kursi pada baris ke 15Tentukan jumlah kursi didalam gedung serba guna / PembahasanU15 = a + n – 1 b = 20 + 15 – 1 3 = 62 kursiS20 = n 2a + n – 1 b = . 20 2 . 20 + 20 – 1 3 = 970 4Dalam suatu rapat kooperasi dihadiri oleh 15 orang yang saling berjabat tangan satu sama lain. Tentukan jumlah jabat tangan yang terjadi dalam rapat / PembahasanOrang pertama akan menyalami 14 orang, orang kedua akan menyalami 13 orang, orang ketiga akan menyalami 12 orang dan orang ke 14 akan menyalami 1 orang. Jadi terbentuk barisan bilangan 1 + 2 + 3 + … + 14. Diketahuia = 1b = 1n = 14Cara menghitung jumlah jabat tangan gunakan rumus deret aritmetika dan hasilnya sebagai berikutJadi banyak jabat tangan dalam rapat tersebut adalah 105 jabat 5Gaji seorang pegawai pabrik mula-mula Rp Setiap bulan gajinya bertambah 5% dari gaji sebelumnya. TentukanJumlah kenaikan gaji selama satu tahunBesar gaji setelah 2 tahunPenyelesaian / PembahasanDiketahuia = Rp = 5 % x Rp = Rp jawaban soal diatas sebagai berikutS12 = . 12 2 . Rp + 12 – 1 Rp = Rp = a + n – 1 b = Rp + 24 – 1 Rp = Rp 6Edwin menumpuk bata dalam bentuk barisan. Banyaknya bata pada baris pertama lebih banyak satu bata dari banyaknya bata pada baris diatasnya. Tumpukan bata dimulai dari 200 bata pada baris pertama dan baris terakhir satu bata. Hitunglah jumlah semua bata yang / PembahasanBarisan bilangan pada bata diatas adalah 20 + 19 + 18 + … + 1. Jadi jumlah semua bata menggunakan barisan aritmetika sebagai berikutJadi banyak bata = 210 7Riska membeli barang kredit seharga Rp Ia melakukan pembayaran dengan diangsur berturut-turut setiap bulan sebesar Rp Rp Rp demikian seterusnya. Berapa lamakah kredit barang tersebut akan / PembahasanDiketahuiSn = Rp = Rp = Rp mencari n sebagai berikutn = -44 tidak mungkin. Jadi lama kredit akan lunas adalah 20 8Berdasarkan survey populasi hewan P bertambah menjadi empat kali lipat setiap 5 tahun. Jika pada tahun 2020 populasi hewan P adalah 640 ekor, berapakah populasi hewan tersebut pada tahun 2010 ?.Penyelesaian / PembahasanDeret bilangan dari tahun 2010 ke 2020 dengan selisih 5 tahun adalah 2010, 2015, 2020. Diketahuin = 3U3 = 640r = 4 empat kali lipatCara menjawab soal ini menggunakan rumus barisan geometri sebagai berikutUn = arn – 1U3 = ar3 – 1640 = a . 42640 = a . 16a = 640/16 = 40Jadi populasi hewan P pada tahun 2010 adalah 40 9Jumlah penduduk suatu wilayah setiap 8 tahun bertambah 100%. Jika pada awal tahun 2016 jumlah penduduk mencapai jiwa, maka jumlah penduduk pada awal tahun 1984 adalah…Penyelesaian / PembahasanDiketahuiDeret bilangan dari tahun 1984 ke 2016 dengan selisih 8 tahun adalah 1984, 1992, 2000, 2008, 2016. Jadi diketahuin = 5U5 = = 2 bertambah 100%Jumlah penduduk pada awal tahun 1984 dihitung menggunakan rumus barisan geometriUn = arn – 1U5 = ar5 – = a . = a . 16a = = jumlah penduduk pada tahun 1984 adalah 10Suatu gedung pertunjukkan mempunyai beberapa kursi. Setelah baris pertama, setiap baris mempunyai 2 kursi lebih banyak daripada baris sebelumnya. Perbandingan banyak kursi baris ke-9 dan ke-6 adalah 4 3. Baris terakhir mempunyai 50 kursi. Banyak kursi yang dimiliki gedung tersebut adalah…Penyelesaian / PembahasanDiketahuib = 2U9 U6 = 4 3Un = 50Hitung terlebih dahulu banyak kursi pada baris pertama a3a + 48 = 4a + 404a – 3a = 48 – 40a = 8Selanjutnya hitung nUn = a + n – 1 b50 = 8 + n – 1 22 n – 1 = 42n – 1 = = 21n = 21 + 1 = 22Banyak kursi dalam gedungJadi banyak kursi dalam gedung = 638 kursi. Berikut ini penulis sajikan soal-soal beserta pembahasannya tentang soal cerita aplikasi mengenai barisan dan deret geometri. Soal-soal ini dikumpulkan dari berbagai sumber termasuk soal UN maupun SBMPTN. Soal juga dapat diunduh melalui tautan berikut Download PDF, 117 KB. Baca Juga Soal dan Pembahasan – Aplikasi Soal Cerita Barisan dan Deret Aritmetika Today Quote “2get” and “2give” create many problems. So, just double it. “4get” and “4give” solve many problems. Bagian Pilihan Ganda Soal Nomor 1 Hasil produksi kerajinan seorang pengusaha setiap bulannya meningkat mengikuti aturan barisan geometri. Produksi pada bulan pertama sebanyak $150$ unit kerajinan dan pada bulan keempat sebanyak $ kerajinan. Hasil produksi selama $5$ bulan adalah $\cdots$ unit kerajinan. A. $ D. $ B. $ E. $ C. $ Pembahasan Diketahui $a = 150$ dan $\text{U}_4 = Rasio barisan geometri ini dapat ditentukan dengan melakukan perbandingan antarsuku sebagai berikut. $\begin{aligned} \dfrac{\text{U}_4}{\text{U}_1} & = \dfrac{ \\ \dfrac{\cancel{a} r^3}{\cancel{a}} & = 27 \\ r^3 & = 27 \\ r & = \sqrt[3]{27} = 3 \end{aligned}$ Dengan demikian, $\begin{aligned} \text{S}_n & = \dfrac{ar^n-1} {r-1} \\ \text{S}_5 & = \dfrac{1503^5 -1} {3 -1} \\ & = \dfrac{150243 -1}{2} \\ & = 75 \cdot 242 = \end{aligned}$ Jadi, hasil produksi selama $5$ bulan adalah $\boxed{ unit kerajinan. Jawaban B [collapse] Soal Nomor 2 Seutas tali dipotong menjadi $4$ bagian, masing-masing membentuk barisan geometri. Jika potongan tali terpendek adalah $2$ cm dan potongan tali terpanjang adalah $54$ cm, panjang tali semula adalah $\cdots$ cm. A. $60$ C. $80$ E. $100$ B. $70$ D. $90$ Pembahasan Panjangnya setiap potongan tali merupakan suku-suku dalam barisan geometri, dengan $\text{U} _1 = a = 2$ dan $\text{U}_4 = 54$. Dalam hal ini, akan dicari $\text{S}_4 = \text{U}_1 + \text{U}_2 + \text{U}_3 + \text{U}_4.$ Langkah pertama adalah menentukan rasionya. $\begin{aligned} \text{U}_4 & = ar^3 \\ 54 & = 2r^3 \\ 27 & = r^3 \\ r & = \sqrt[3]{27} = 3 \end{aligned}$ Jadi, rasio barisannya adalah $3$. Untuk itu, didapat $\text{U}_2 = ar = 2 \cdot 3 = 6$ dan $\text{U}_3 = ar^2 = 2 \cdot 3^2 = 18.$ Dengan demikian, $\text{S}_4 = 2 + 6 + 18 + 54 = 80.$ Jadi, panjang tali semula sebelum dipotong adalah $\boxed{80~\text{cm}}$ Jawaban C [collapse] Baca Juga Soal dan Pembahasan – Barisan dan Deret Geometri Soal Nomor 3 Pesawat terbang melaju dengan kecepatan $300$ km/jam pada menit pertama. Kecepatan pada menit berikutnya $1\dfrac12$ kali dari kecepatan sebelumnya. Panjang lintasan seluruhnya dalam $4$ menit pertama adalah $\cdots \cdot$ A. $ km D. $ km B. $ km E. $ km C. $ km Pembahasan Kecepatan pesawat tiap menitnya membentuk barisan geometri. Diketahui $a = 300$ dan $r= 1\dfrac12 = \dfrac32.$ Ditanya $\text{S}_4$ Dengan demikian, $\begin{aligned} \text{S}_n & = \dfrac{ar^n-1} {r-1} \\ \text{S}_4 & = \dfrac{300\left\left\dfrac32\right^4 -1\right} {\dfrac32 -1} \\ & = \dfrac{300\left\dfrac{81}{16} -\dfrac{16}{16}\right} {\dfrac12} \\ & = 300 \cdot \dfrac{65}{16} \cdot 2 = \end{aligned}$ Jadi, panjang lintasan seluruhnya dalam $4$ menit pertama adalah $\boxed{ Jawaban A [collapse] Soal Nomor 4 Sejak tahun $2018$, terjadi penurunan pengiriman surat dari kantor pos. Setiap tahunnya banyak surat yang dikirim berkurang sebesar $\dfrac15$ dari banyak surat yang dikirim pada tahun sebelumnya. Jika pada tahun $2018$ dikirim sekitar $1$ juta surat, maka jumlah surat yang dikirim selama kurun waktu $2018 – 2022$ adalah $\cdots$ juta surat. A. $\dfrac{2101}{625}$ D. $\dfrac{365}{125}$ B. $\dfrac{369}{125}$ E. $\dfrac{360}{125}$ C. $\dfrac{2100}{625}$ Pembahasan Kasus di atas merupakan kasus barisan dan deret geometri. Diketahui $a = 1$ dalam satuan juta. Karena banyak surat berkurang sebesar $\dfrac15$ tiap tahunnya, maka pada tahun berikutnya, banyak surat menjadi $1 -\dfrac15 = \dfrac45$ sehingga rasionya adalah $r = \dfrac45$. Kurun waktu dari tahun $2018$ sampai $2022$ selama $5$ tahun sehingga $n = 5$. Dengan demikian, $\begin{aligned} \text{S}_n & = \dfrac{a1-r^n} {1-r} \\ \text{S}_5 & = \dfrac{1\left1 -\left\dfrac45\right^5 \right} {1 – \dfrac45} \\ & = \dfrac{1- \dfrac{ {\dfrac15} \\ & = \dfrac{ \times \cancel{5} = \dfrac{ \end{aligned}$ Jadi, jumlah surat yang dikirim selama kurun waktu $2018 -2022$ adalah $\boxed{\dfrac{ juta surat. Jawaban A [collapse] Baca Juga Soal dan Pembahasan – Deret Geometri Tak Hingga Soal Nomor 5 Dua orang anak sedang melakukan percobaan matematika dengan menjatuhkan sebuah bola dari lantai $2$ rumah mereka. Ketinggian bola dijatuhkan adalah $9$ meter dari atas tanah. Dari pengamatan, diketahui bahwa pantulan bola mencapai $\dfrac89$ dari tinggi pantulan sebelumnya. Ketinggian bola setelah pantulan ke-$5$ yang paling mendekati adalah $\cdots$ m. A. $4,00$ D. $4,75$ B. $4,25$ E. $5,00$ C. $4,50$ Pembahasan Kasus ini merupakan kasus barisan geometri. Tinggi pantulan pertama adalah $9 \times \dfrac89 = 9$ meter. Dengan demikian, diketahui $\text{U}_1 = 9$ dan $r = \dfrac89.$ Ditanya $\text{U}_5.$ $\begin{aligned} \text{U}_n & = ar^{n-1} \\ \text{U}_5 & = 9\left\dfrac89 \right^{5-1} \\ & = \dfrac{8^5}{9^4} \approx 5 \end{aligned}$ Ketinggian bola setelah pantulan ke-$5$ yang paling mendekati adalah $\boxed{5~\text{m}}$ Jawaban E [collapse] Soal Nomor 6 Bakteri A berkembang biak menjadi dua kali lipat setiap lima menit. Setelah $15$ menit, banyak bakteri ada $400$. Banyak bakteri setelah $30$ menit adalah $\cdots \cdot$ A. $800$ D. $ B. $ E. $ C. $ Pembahasan Misalkan $\text{U}_1$ menyatakan banyaknya bakteri mula-mula $0$ menit, $\text{U}_2$ saat $5$ menit, $\text{U}_3$ saat $10$ menit, dan seterusnya. Diketahui $\text{U}_4 = ar^3 = 400$ dan $r = 2.$ Ditanya $\text{U}_7$. Dengan demikian, didapat $\begin{aligned} \text{U}_n & = ar^{n-1} \\ \text{U}_7 & = ar^6 \\ & = ar^3r^3 \\ & = 4002^3 = 4008 = \end{aligned}$ Banyak bakteri setelah $30$ menit adalah $\boxed{ Jawaban D [collapse] Baca Juga Soal dan Pembahasan – Barisan dan Deret Versi HOTS/Olimpiade Soal Nomor 7 Chandra mengambil sebotol air dari Laut Mati yang berisi $50$ archaebacteria untuk dikembangbiakkan di laboratorium. Andaikan satu archaebacteria mulai menggandakan diri setiap $25$ menit, berapa jumlah banyaknya archaebacteria selama $5$ jam? A. $ D. $ B. $ E. $ C. $ Pembahasan Banyaknya archaebacteria setiap 25 menit membentuk barisan geometri dengan banyak mula-mula $a = 50$ dan rasio $r = 2$ karena menggandakan diri. Perhatikan bahwa dalam waktu $5$ jam setara dengan $300$ menit, archaebacteria mengalami penggandaan diri sebanyak $\dfrac{300}{25} = 12$ kali. Artinya, kita mencari suku ke-$13$ perlu ditambah $1$ yang merepresentasikan banyak archaebacteria selama $5$ jam. $$\begin{aligned} \text{U}_{n} & = ar^{n-1} \\ \text{U}_{13} & = 50 \cdot 2^{13-1} \\ & = 50 \cdot 2^{12} \\ & = 50 \cdot = \end{aligned}$$Jadi, banyaknya archaebacteria selama $5$ jam adalah $\boxed{ Jawaban C [collapse] Soal Nomor 8 Keuntungan sebuah percetakan setiap bulannya bertambah menjadi dua kali lipat dari keuntungan bulan sebelumnya. Jika keuntungan bulan pertama maka keuntungan percetakan tersebut pada bulan keenam adalah $\cdots \cdot$ A. B. C. D. E. Pembahasan Kasus di atas adalah masalah kontekstual terkait barisan geometri dengan $a = dan $r = 2$. Dalam hal ini, akan dicari nilai dari $\text{U}_6.$ $\begin{aligned} \text{U}_n & = ar^{n-1} \\ \text{U}_6 & = \cdot 2^{6-1} \\ & = \cdot 2^5 \\ & = \cdot 32 = \end{aligned}$ Jadi, keuntungan percetakan tersebut pada bulan keenam adalah Jawaban B [collapse] Soal Nomor 9 Pertambahan penduduk setiap tahun suatu desa mengikuti aturan barisan geometri. Pertambahan penduduk pada tahun $2010$ sebesar $24$ orang dan pada tahun $2012$ sebesar $96$ orang. Pertambahan penduduk pada tahun $2015$ adalah $\cdots$ orang. A. $687$ C. $766$ E. $876$ B. $768$ D. $867$ Pembahasan Misalkan pertambahan penduduk pada tahun $2010$ disimbolkan sebagai $\text{U}_1 =a = 24$. Dengan demikian, diperoleh $\begin{aligned} \text{U}_3 & = ar^2 \\ 24r^2 & = 96 \\ r^2 & = \dfrac{96}{24} = 4 \\ r & = 2. \end{aligned}$ Pertambahan penduduk pada tahun $2015$ adalah $\boxed{\text{U}_6 = ar^5 = 242^5 = 768~\text{orang}}$ Jawaban B [collapse] Soal Nomor 10 Pertambahan pengunjung sebuah hotel mengikuti barisan geometri. Pada tahun $2015$ pertambahannya $42$ orang dan pada tahun $2017$ pertambahannya $168$ orang. Pertambahan pengunjung hotel tersebut pada tahun $2020$ adalah $\cdots \cdot$ A. $ orang D. $472$ orang B. $762$ orang E. $336$ orang C. $672$ orang Pembahasan Misalkan pertambahan pengunjung hotel pada tahun $2015$ disimbolkan sebagai $\text{U}_1 =a = 42$. Dengan demikian, pertambahan pengunjung hotel pada tahun $2017$ adalah $\text{U}_3 = 168$. Selanjutnya, akan dicari rasio barisan geometri tersebut. $\begin{aligned} \text{U}_3 & = ar^2 \\ 42r^2 & = 168 \\ r^2 & = \dfrac{168}{42} = 4 \\ r & = 2 \end{aligned}$ Pertambahan pengunjung hotel pada tahun $2020$ adalah $\text{U}_6 = ar^5 = 422^5 = \boxed{1344~\text{orang}}$ Jawaban A [collapse] Soal Nomor 11 Hasil observasi pada penderita suatu penyakit tertentu, ditemukan bakteri yang menyebabkan luka pada bagian kaki penderita akan semakin melebar. Untuk mencegah pertumbuhan dan sekaligus mengurangi jumlah bakteri hingga sembuh, penderita diberikan obat khusus yang diharapkan dapat mengurangi bakteri sebanyak $20\%$ pada setiap tiga jamnya. Jika pada awal observasi jam terdapat sekitar $ bakteri dan langsung diberikan obat yang pertama, perkiraan jumlah bakteri setelah pemberian obat pada pukul adalah $\cdots \cdot$ A. $100$ bakteri D. $ bakteri B. $ bakteri E. $ bakteri C. $ bakteri Pembahasan Misalkan $\text{U}_1$ menyatakan banyak bakteri pada saat jam $\text{U}_2$ saat jam sampai $\text{U}_5$ saat jam Karena jumlah bakteri berkurang sebesar $20\%$, maka jumlah bakteri saat jam tertentu dapat ditentukan dengan menggunakan konsep barisan geometri dengan suku pertama $\text{U}_1 = dan $r = 1-20\% = 80\% = \dfrac45$. Akan dicari $\text{U}_5$. $\begin{aligned} \text{U}_5 & = ar^4 \\ & = \times \left\dfrac45\right^4 \\ & = \cancel{5^4} \times 10 \times \dfrac{4^4}{\cancel{5^4}} \\ & = 10 \times 256 = \end{aligned}$ Jadi, perkiraan jumlah bakteri setelah pemberian obat pada pukul adalah $ bakteri. Jawaban C [collapse] Baca Juga Soal dan Pembahasan – Barisan dan Deret Aritmetika Hai Quipperian, pernahkah kamu mendengar mikroorganisme bernama amoeba? Salah satu keunikan amoeba adalah mampu membelah diri menjadi dua kali lipat jumlah semula. Contoh, satu amoeba akan membelah diri menjadi dua amoeba, dua amoeba akan membelah diri menjadi empat amoeba, dan seterusnya. Jika diurutkan, banyaknya amoeba setelah membelah diri akan membentuk pola barisan yang disebut barisan geometri, lho. Apa yang dimaksud barisan geometri? Yuk, simak selengkapnya! Apa itu Barisan dan Deret? Sebelum belajar lebih lanjut tentang barisan dan deret geometri, kamu harus tahu dulu apa itu barisan dan deret. Barisan adalah pola suatu bilangan dengan aturan atau ketentuan tertentu. Sementara deret adalah bentuk penjumlahan dari suatu pola bilangan atau barisan. Pengertian Barisan dan Deret Geometri Sama seperti aritmatika, geometri juga terdiri dari barisan dan deret atau kamu biasa menyebutnya sebagai barisan geometri dan deret geometri. Apa perbedaan antara barisan dan deret geometri? Pengertian Barisan Geometri Barisan geometri adalah pola bilangan atau urutan bilangan yang memiliki perbandingan atau rasio tetap antarsukunya. Contohnya seperti pada pembelahan amoeba, di mana satu amoeba akan membelah diri menjadi dua, dua amoeba akan membelah diri menjadi empat, dan seterusnya. Jika dinyatakan sebagai barisan geometri, akan menjadi 1, 2, 4, 8, 16, 32, dan seterusnya. Bilangan 1, 2, 4, 8, …, n disebut sebagai suku atau penyusun barisan. Secara matematis, suku dilambangkan sebagai Un suku ke-n. Sementara itu, nilai perbandingan antara Un+1 dan Un disebut sebagai rasio. Secara matematis, rasio dilambangkan sebagai r. nilai rasio tidak selalu r > 1, ya. Jika nilai sukunya semakin mengecil, sudah pasti rentang rasionya r 1 dan nilainya akan terus membesar tanpa ada batas tertentu. Ciri Deret Geometri Ciri deret geometri adalah suku-suku yang dijumlahkan memiliki perbandingan nilai tetap. Contohnya, 1 + 2 + 4 + 8 + 16 + 32 + … + … + …, dan seterusnya. Rumus Barisan dan Deret Geometri Rumus barisan geometri biasanya digunakan untuk menentukan suku ke-n dari barisan tersebut. Sementara rumus deret digunakan untuk mencari jumlah n suku tertentu dari barisan geometri. Seperti apa sih rumusnya? Rumus Barisan Geometri Secara matematis, rumus suku ke-n barisan geometri adalah sebagai berikut. Dengan ketentuan Un = suku ke-n; a = suku ke-1 atau U1; n = letak suku yang dicari; dan r = rasio atau perbandingan antara Un+1 dan Un. Setelah kamu tahu rumus untuk mencari suku-n, cobalah hitung berapa jumlah amoeba yang dihasilkan pada pembelahan ke-10? Jumlah awal amoebanya adalah satu, ya. Mula-mula, kamu harus membuat barisan geometri dari pembelahan amoeba seperti berikut. 1, 2, 4, 8, 16, 31, …, … Dari barisan di atas, diketahui a = U1 = 1 r = 2 1 = 2 atau 4 2 = 2 n = 10 dengan demikian Jadi, banyaknya amoeba di pembelahan ke-10 adalah 512. Rumus Deret Geometri Berdasarkan nilai rasionya, deret geometri memiliki beberapa rumus seperti berikut. Rumus deret geometri untuk r > 1 Jika r > 1, rumus deret geometrinya dinyatakan sebagai berikut. Dengan Sn = jumlah n suku barisan geometri; a = suku ke-1 atau U1; n = letak suku yang dicari; dan r = rasio atau perbandingan antara Un+1 dan Un. Rumus deret geometri untuk r 1, rumus deret geometrinya dinyatakan sebagai berikut. Dengan Sn = jumlah n suku barisan geometri; a = suku ke-1 atau U1; n = letak suku yang dicari; dan r = rasio atau perbandingan antara Un+1 dan Un. Rumus deret geometri tak hingga konvergen Deret geometri tak hingga konvergen adalah jumlah barisan geometri yang banyaknya tak hingga dengan nilai yang terus mengecil. Secara matematis, rumus deret geometri tak hingga konvergen adalah sebagai berikut. Contoh deret geometri tak hingga konvergen adalah saat kamu menjatuhkan bola dari ketinggian tertentu. Semakin lama, ketinggian bola akan berkurang hingga kemudian berhenti. Rumus deret geometri tak hingga divergen Divergen artinya menyebar, sehingga deret geometri tak hingga divergen adalah jumlah barisan yang banyaknya tak hingga dengan nilai yang terus membesar. Oleh karena nilainya yang terus membesar tanpa ada batas tertentu, maka rumus deret geometri tak hingga divergen tidak bisa ditentukan karena S∞ = ∞. Bagaimana Penerapan Barisan dan Deret Geometri dalam Kehidupan Sehari-Hari? Penerapan barisan dan deret geometri dalam kehidupan sehari-hari adalah sebagai berikut. Menghitung pembelahan mikoorganisme, misalnya pada reproduksi bakteri. Menentukan panjang lintasan bola yang dijatuhkan dari ketinggian tertentu hingga berhenti. Menghitung pertumbuhan penduduk dan memperkirakan jumlah penduduk di masa mendatang. Menghitung peluruhan zat radioaktif. Contoh Soal Barisan dan Deret Geometri Untuk mengasah kemampuanmu tentang materi ini, yuk simak contoh soal berikut. Contoh Soal Barisan Geometri Diketahui suatu deret geometri berikut. Berapakah nilai suku ke-15? Pembahasan Mula-mula, kamu harus mencari rasio dari barisan pada soal. Dengan demikian, suku ke-15 bisa dicari dengan rumus berikut. Jadi, suku ke-10 nilainya adalah Contoh Soal Deret Geometri Farhan memiliki seutas tali. Lalu, tali tersebut dipotong menjadi 5 bagian dengan ketentuan, setiap potongan merupakan kelipatan potongan sebelumnya dan nilai kelipatan itu selalu tetap. Potongan tali yang paling pendeknya adalah 3 cm dan potongan tali terpanjangnya 243 cm. Berapakah panjang tali mula-mula? Pembahasan Diketahui U1 = a = 3 cm U5 = 243 Ditanya Sn =…? Jawab Mula-mula, kamu harus mencari rasio setiap potongan tali tersebut menggunakan SUPER “Solusi Quipper” berikut. Lalu, tentukan panjang tali menggunakan rumus deret geometri untuk r > 1. Jadi, panjang tali Farhan mula-mula adalah 363 cm atau 3,63 m. Itulah pembahasan Quipper Blog kali ini. Semoga bermanfaat, ya. Untuk mendapatkan materi lengkapnya, yuk buruan gabung Quipper Video. Salam Quipper!

aplikasi barisan dan deret geometri